
NOTATION 

X, specimen thermal conductivity; T, temperature; Rt, thermal resistance of constric- 
tion; a, specimen radius; h, specimen height; r, radius of area of heat introduction; AT, 
temperature difference; Q, power introduced into specimen. 
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EFFECT OF A PHASE TRanSITION ON HEAT AND MASS TRANSFER 

IN DISPERSED FLOWS 

Yu. A. Buevich UDC 536.244:532.546.2 

New effects are discussed Which are characteristic for steady heat and mass trans- 
fer in a dispersed medium when a phase change occurs at particle surfaces. 

Transport processes in real dispersed media and flows encountered in power engineering, 
chemical engineering, and other applications are frequently accompanied by homogeneous and 
heterogeneous chemical transformations and phase transitions. Examples are flows of hot liq- 
uids or unheated vapor-- gas mixtures containing dispersed elements of a different phase, flows 
of reacting mixtures in the presence of catalyst particles, drying of granular materials, 
certain granulation processes, etc. 

Reactions and phase transitions are significantly affected by the average temperature 
and concentration gradients of admixtures and reagents, and by average heat and mass fluxes, 
which in principle can lead to a change in the relations connecting the indicated thermody- 
namic forces and fluxes as compared with the relations characteristic of dispersed media with 
inert particles. Therefore one should expect both that the coefficients in these relations 
will differ from those for a homogeneous heat- and mass-transfer medium by amounts depending 
on the nature and intensity of the phase transitions and chemical transformations occurring 
and that specific cross effects, such as the effect of thermal diffusion, will appear. 

As far as we know, these effects have not been specially studied. Using the general 
theory from [i] we show their presence by an example of a very simple problem of steady heat 
and mass transfer of vapor in a system with evaporating particles in the limit when the kine- 
tics of evaporation (sublimation) is limited by the rate at which heat is supplied to the 
surface and can be described approximately in the temperature range of interest by a linear 
function 

Q~ (T) = - -  LQ c (T), Qc (T) = a~ @ azT. (1)  

In addition, in order to concentrate our attention on the fundamental aspects of the 
matter and to simplify the calculations as much as possible, we make the same assumptions as 
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in studying the effects of unsteadiness in [2]. We consider media of low or moderate den- 
sities containing identical spherical particles and assume that the Peclet numbers, which 
characterize convective diffusion and heat conduction at the single-particle level, are small 
in comparison with unity. These assumptions enable us to neglect convective transfer con- 
nected with fluctuations of the phases and with their average relative motion, conductive heat 
transfer at contacts between particles, and also the effect of the nonoverlapping of parti- 
cles [i, 2]. It is assumed that the particles are small in comparison with the linear scale 
of the temperature and concentration averages and that the latter is small in comparison with 
the scale of the macroscopic inhomogeneity of the medium. This enables us to consider the 
medium as a homogeneous continuum and to describe transfer processes byusing the continuous 
methods of [i]. 

In the coordinate system fixed with respect to the average motion of the medium the 
equations of steady transfer can be written in the form [i] 

- - v q ~ + ~ O ,  - - ~ - ~ h ~ = O ,  

in which the formal relations 

q~ (R) = - -  ~,oV z (R) - -  (2~ - -  ~,o) n (R) 

qc (R) = - -  DoV c (R)  - -  ( D t  - -  Do) n (R) 

(2) 

V t* (RiR') dR', 
iR--R" l~a 

S V c* (RiR') dR'  
/R--R'I.<a 

(3) 

hold, and the integration is extended over the positions R' of the center of an isolated test 
particle in such a way that point R lies within it. Similar representations hold also for 
~T and ~c which characterize interphase exchange; they are not written down here, since in 
the case under consideration ~T and ~c are the same as the functions h T and h c which describe 
the strengths of the heat and vapor mass sources in the dispersed phase, which for a unit 
volume of the medium can be written as 

h~(R) = n(R) J Q~(R + r)dr, h~(R) = n(R) ~ Q~(R + r) dr. (4) 
r =a  f =u  

Here the integration extends over the surface of the test particle. 

The temperature and vapor density averages a~e expressed in terms of similar quantities 
for the phases of the medium in the form 

(5) = e % @ 9 ~ ,  c = e c  o ~ p c ~ ,  e =  1 - - p .  

It is clear that cx and, consequently, also co are fictitious quantities with no physical mean- 
ing. They are introduced only to ensure a better analogy between heat- and mass-transfer pro- 
cesses and to determine the correct value of c in Eqs. (3) as Dx § 0. This example is ac- 
tually used in [3] to calculate the effective diffusion coefficient in a granular medium. 

Equations (2) determine the unknown fields To, rl and co, c~. Using the fact that the 
standard transfer equations which hold in the individual phases are linear and using the general 
method of [i], all terms in (2) must be written as linear combinations of local values of 
these fields or their spatial derivatives with proper tensor dimensionality. The unknown co- 
efficients in these combinations are determined a posteriori by using Eqs. (3), where the in- 
tegrands in these formulas are found by solving special problems on the perturbations intro- 
duced into the average temperature and concentration fields by a fixed test particle. 

Even after making these simplifying assumptions the calculations turn out to be very 
cumbersome. Therefore we use certain results which are generally not a priori obvious and 
are not verified by subsequent analysis. In the first place, as one should expect by analogy 
with [1-3], in the absence of contact transfer, which is treated independently in [4], the 
quantities Tx and cx are uniquely expressed in terms of To and co, so that in determining 
the form of the indicated combinations it is sufficient to take account only of the tempera- 
ture and concentration fields in a continuous phase. Secondly, the component of the heat 
flux proportional to the concentration gradientis identically zero. Thereforewe can take 

q~ = - - ~ V Z o ,  qc = - - D V C o ~ D ~ v T o "  (6 )  

In addition, using (I) 
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h e = - - L h ~ ,  h e = 61 § 6~ ( 7 )  

The coefficients X, D, and D z in (6) and ax, o2 in (7) are presently unknown, and the pur- 
pose of the following analysis is to determine them explicitly. 

Using (6) and (7) we obtain from (2) 

~AT o - -  L (61 + ~2To) = 0, 

DAc o + D~Ax 0 -5 61 -q- 62T 0 = 0. (8 )  

In the neighborhood of point R the functions to and co can be written in the form 

To (R ~- r) = T (!~) + E (R) r + rM (R) r + - . . ,  
( 9 )  

co (R + r) = C (R) + 13 (R) r + rN (R) r + - . . ,  

where each successive term in these expansions is of higher order in the ratio of the radius 
of the particle to the scale of the fields To, co than the preceding term. We have from (8) 
and (9) 

' (' LD~)  61+(~2T S p N I - -  L ( a  1-:-, 62T) S pN = - -  1 ~ - ( 1 0 )  
2L ' , ~ 2D 

These same expansions can also be written in the neighborhood of any other point R'. The co- 
efficients in these expansions, henceforth denoted by primes, are expressed as simple func- 
tions of the coefficients in (9) and the components of the vector R' --R. 

We write the perturbed temperature and concentration fields outside the test particle 
in the form 

�9 , , CP. "t'~ = "to w-T'  , c ~ C o =  ' (ii) 

Using the same considerations in the formulation of the problem of the test particle as in 
[i-3], we obtain for T' the temperature problem 

A ' r ' - - s 2 x  ' = 0 ,  r > a ;  A'r* = O, r < a ;  s~=62L/~,, 

T' ( 1 2 )  + % = T*, ~,nv ( ' (  + To) = )~lnv ~* - -  Q~, r = a; 

T' - -+0 ,  r - - ~ ;  x * < o o ,  r =  0 

and for c' the concentration problem 

Ac' = - -  K~' ,  r > a; Ac* = 0, r < a; K = (s2D~ + 62)/D, 

c' -k- co = c*, D n v  (c' q- co) + D ~ n v  (r' § T0) = D t n v c *  - - Q ~ ,  r = a; ( 1 3 )  

c ' - - ~ 0 ,  r - + o o ;  c * < o o ,  r = 0 ,  

where the fields to and Co are defined in (9), and the fluxes Qr and Qc in (i). The origin 
of the coordinate system is chosen at the center of the test sphere R'. 

In solving problems (12) and (13) we use polynomials ~n spherical harmonics, taking ac- 
count of the fact that terms proportional to spherical harmonics of order higher than the 
first do not contribute to the integrals in (3) and therefore need not be written down. We 
write the solution of problem (12) in the form 

T' = A o K1/2 (st) -Jr- A1E'r  I(3/2(sr) @ . . . ;  

"~* = T' q- AoKi/2 -}- 1/3a~-Sp M'  q- (1 q- AIK3/2)E'r ~, . . . ,  (14)  

K j ---  t f  : (sa), 

where the Kj (x) are Macdonald functions, and the integration constants are 

Ao = __ (cq -l- a~T') aL - -  1/3a 2 (2~, - -  %eL) Sp M'  

~F1/2 + a2aLKl/2 
d (15) 
[(+)' - ] ~ - - ) ~  + ~ a L  , Fj  = - - a - -  K i ( s r )  , r = a .  

AI= (~1--)~ q- cqaL) Ka/2-@~F3/2 dr 

Since an analysis of solution (14) is very complex for the general case, we restrict 
ourselves to small ~ and ~2 so that ~ ~ (sa) 2 << i. Using (8) we note that the last inequal- 
ity is equivalent to the assumption that the scale of to, Co is very much larger than a and 
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is a necessary condition for the applicability of continuous methods. Retaining only first 
order terms in ~, using for Qc the representation from (I) with T = T*, and expressing T' 
and E' in terms of T, E, and the vector r = R- R', we evaluate the second integral in (4) 
and compare the result with the second of Eqs. (7). This leads to the equations 

3p ~ZiFl/2 a2aL a i =  , c ~ - - - - - - ,  (16) 
a (1 -- 1/2cop)F,/2 + oJeK,/2 

determining ox and ~2 as functions of known quantities and the single unknown parameter 
which we find by first calculating the average temperature of the dispersed phase. Averaging 
r* from (14) and (15) over the volume of the test particle, we have, similar to the preced- 
ing, 

"r --  (aja2)(o3eK1/2 ~ 1/2o3pF I /2) ,q __-- (17) 
(1 -- 1/2o9) F,/2 + o~eKl/2 

By evaluating the integral in the first of Eqs. (3), using (5) and (17), and comparing the 
result with the first of Eqs. (6), we obtain a transcendental equation for the effective ther- 
mal conductivity: 

6 =  [e(1--1/2~176 q- (• ~" ~'1 
(1--1/203p)F,/z+c0eK,/2 (• , 6 = -~-o  ' •  Zo (18) 

Using the expansions of the Macdonald functions in powers of their arguments, we find 
from (16)-(18) 

( ~  ~ "  0 ~ ,  'lJ" 1 ~ *I~ 0 - -  (d0 1 -- - -  ~) '~0 -~- ' 
a 2 , 

- - - f p  p +  1 - -  - 1 -  ( •  . 
+ 26 • + 2 6 3 

In p a r t i c u l a r ,  13 can  be  w r i t t e n  as  6 ~ + 6B, where  

6 ~ I+3(~--I) 6 ~ 6o7_ L ~ a~aL p, --, o ~  
r. + 26 ~ ~0 ~o 

- - - 2 - P +  (:~+26~ 2L 3 

(19) 

(20) 

The equation for ~~ agrees with that obtained earlier in [5] for moderately concentrated 
dispersed media with inert particles. In the approx~ation of nonoverlapping particles the 
difference in the formulations of the test-particle problem in [3] and [5] disappears, and 
6B describes the change in the effective thermal conductivity resulting from a phase transi- 
tion. For values of ~ not too much larger than unity, ~ < 0; i.e., the phase transition 
worsens the heat transfer; in a medium with heat-conducting particles (~ 0-x), ~B is gen- 
erally positive and heat transfer is ~proved. 

The solution of problem (13) with the function T' from (14) has the form 

r/a r/a [ ;  ]-[ ] a 1 G ' r + ( B ~ + k A ~  t~/2Kl/2(sat)dt)E'r ( _ ~ _ ) a + . . . ;  c' = B~ + kA~ t ~FK1/2 (sat)dr r + 2 .l (21) 

c * = C ' + ~ + .  1 a2SpN,+  ~ G ' r + B I E ' r ,  k-- aK, 
3 2 s 

where we obtain for the integration constants as Dt + 0 

B o =  a ( ~ l + ~ T ' )  + Ao k +  D ]K1/~--  F1/2 + 2Sp + SpM' , 
D D - 3  D 

Al (kK1/o + D, + K~/2 D,D F312). 
(22) 

B~=_!__l _ D , + a 2 a  + 1 
2 D 2 

The integrals in (21) can be expressed in terms of exponential functions and also all the quanti- 
ties in (21) and (22) except D and DT, which are determined by the above relations and can 
be c o n s i d e r e d  known. 
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To determine the effective coefficients of diffusion and thermal diffusion we compare 
the expressions for qc from (3) and (6). Equations (21) and (22) enable us to evaluate the 
integral in (3) and to find a formal expression for cI necessary to estimate the value of c 
appearing in (3) in accord with (5). As a result the flux qc is written as a sum of terms 
proportional to G and E from (9), with coefficients of proportionality depending on D and 
D T as parameters. Equating these coefficients to the corresponding coefficients in (6) we 
obtain two algebraic equations for the latter parameters. The solution of these equations 
completes the investigation. The calculations and final expressions for these parameters 
are too complicated to present here. We write down only approximate relations which are ac- 
curate to first-order terms in ~i or a2, i.e., in ~. 

Using (i0), (15), and (19) we obtain from (21) at point R, to the accuracy indicated 

cl ~ Co + (1 - -3  2t,)(% + a.,~o)(a/D), 

V c ~ G - -  ( 1 - -  3 29) 9 (a.,_a/D) E. 

The evaluation of the integral for qc in (3) gives 

n vc*dR ' ~ p  ~ t 3 + B l s  , 

so  t h a t  b y  c o m p a r i n g  (3 )  a n d  (6 )  we o b t a i n  a f t e r  a s i m p l e  c a l c u l a t i o n  

where B ~ is defined in (20). 

( 2 3 )  

(24) 

D ---- D ~ = (1 - -  3/29) D, 

2• -? (1 --9p) 13~ (25) 
D~ -~ a~a 9 

2• -k 2 (2 - -  39) 6 ~ 

I t  i s  e a s y  t o  v e r i f y  t h a t  t h e  f i r s t  o f  E q s .  ( 2 5 ) ,  w h i c h  s h o w s  
that the effective coefficient of diffusion in the case under discussion does not depend on 
the existence of a phase transition, is valid in any approximation in al and ~2 and agrees 
with the result obtained earlier in [5]. The second of Eqs. (25) shows that in a dispersed 
medium with evaporating particles an effect is observed which is analogous to the well-known 
phenomenon of thermal diffusion in gases and determines the corresponding coefficient of ther- 
mal diffusion. 

The fact that D is independent of a phase transition and the absence of diffusive heat 
conduction, i.e., the component of the heat flux proportional to the gradient of the vapor 
concentration, are due entirely to the simplifying assumption made in writing (i) that the 
kinetics of evaporation does not depend on the vapor concentration, as is possible if the 
partial pressure of the vapor is very much smaller than the saturated vapor pressure. In the 
more general case a phase transition will affect both % and D, and two overlapping effects 
will appear -- thermal diffusion and diffusive heat conduction. It is clear that both effects 
can significantly influence the intensity of transfer processes in regions with large gra- 
dients, for example, close to walls. 

Similar phenomena will occur for chemical transformations as well as for phase transi- 
tions. Thus, for example, all the results presented automatically carry over to dispersed 
media with a catalytic reaction at particle surfaces if we understand by �9 and c the concen- 
trations of a reagent and a reaction product, respectively, and the kinetics of the reaction 
is described by equations of the type (i), where L plays the role of a stoichiometric coef- 
ficient. Generalization to the case of several chemical transformations or phase transitions 
with kinetics depending on temperature, vapor concentrations, and the substances taking part 
in the reactions is simple in principle, but involves cumbersome calculations. 

NOTATION 

Ai, Bi, integration constants; a, radius of particles; c, concentration of vapor; D, 
coefficient of diffusion; DT, coefficient of thermal diffusion; E, temperature gradient; G, 
concentration gradient; hT, hc, strengths of heat and vapor mass sources per unit volume of 
medium; K, k, coefficients defined in (13) and (21); L, heat of vaporization; M, N, tensors 
introduced in (9); n~ number density of particles; n, unit vector along outward normal; Q~, 
Qc, strengths of heat and vapor mass sources per unit area of phase interface; qT, qc, aver- 
age heat and vapor mass fluxes; s, parameter introduced in (12); ~i, coefficients in (i); 
~B, correction to B ~ defined in (20); e, porosity; %, thermal conductivity; p, volume con- 
centration of particles; oi, coefficients introduced in (7); T, temperature; ~T' ~c' interphase 
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heat and vapor mass fluxes per unit volume of medium; w, parameter defined in (16). Indices: 
0, i, continuous and dispersed phases, respectively; *, quantities perturbed by test particle; 
o, parameters of medium when there is no phase transition. 
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RATE OF BUBBLE RISE IN A NONqINIFORM FLUIDIZED BED 

A. I. Tamarin, Yu. S. Teplitskii, 
and Yu. E. Livshits 

UDC 532.546 

The dimensions and rate of rise of bubbles in a column 700 mm in diameter were de- 
termined experimentally. On the basis of a two-phase model, a calculated correla- 
tion was obtained which related the relative velocity of a gas bubble to its diam- 
eter. 

At the present time, the problem of the rise of a single artificial bubble in a uniform 
fluidized bed has been studied in some detail in the literature and the dependence of its 
velocity on diameter obtained [3]: 

1/ ' 
vB = k g -~- D~, (1) 

w h e r e  0 . 8  < k ~- 1 . 2 .  

In a nonuniform fluidized bed, coalescence of bubbles occurs and there is only fragmen- 
tary data on the rates of rise and dimensions of gaseous nonuniformities averaged across the 
fluidized bed [4-6, 9, i0]. There is almost no data for columns of large diameter [Ii]. At 
the same time, this information is of great interest for the design of commercial equipment. 

The present paper is aimed at the problems of obtaining information about the quantities 
v B and D B in a column 700 mm in diameter and of unifying the known experimental data. 

The following correlation for the vertical size of a bubble was obtained [8] for equip- 
ment of different sizes (i00 mm <- D ----- 700 mm): 

13 Dh = gl/S [(U--U0) h] 2/3, (2)  

a n d  i s  c o n n e c t e d  t o  b u b b l e  d i a m e t e r  t h r o u g h  t h e  r e l a t i o n  [13] D h = 0.7D B. E q u a t i o n  (2)  i s  
valid for small particles (70 < d < 400 v) and uniform gas distribution. 

For similar conditions a relationship was found [2] for expansion of the bed: 

[ H~ \1/~ 
p - - 1 = 0 . 7 /  " | Fr 1IS (3)  

f o r  D = 100-700  mm and 0 . 5  < Ho/D < 2. 
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